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Abstract

The chromaticity diagram associated with the 1931 2� CIE color-matching

functions is shown to be slightly non-convex. While having no impact on prac-

tical colorimetric computations, the non-convexity does have a significant

impact on the shape of some optimal object color reflectance distributions

located on the outer surface of the object color solid. Instead of the usual two-

transition Schrödinger form, many optimal colors exhibit higher transition

counts. A linear programming formulation is developed and is used to locate

where these higher-transition optimal object colors reside on the object color

solid surface. The regions of higher-transition count appear to have a point-sym-

metric, complementary structure. The high-transition behavior is shown to be

largely absent in more modern color-matching functions, such as the recent

“physiologically-relevant” color-matching functions transformed from cone

fundamentals.
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1 | INTRODUCTION

The color-matching functions (CMFs), when plotted as a
set of three-dimensional vectors in tristimulus space,
form an origin-vertexed cone enveloping all possible
colors. Nested within this cone is the object color solid
(OCS). It contains all “object colors” that can be pro-
duced by a nonfluorescent reflecting surface (ie, having a
spectral reflectance distribution between 0 and 1), under
the action of some specified illuminant. The outer surface
of the OCS contains the “optimal object colors.” Histori-
cally, the optimal colors are believed to be associated
with rectangular spectral reflectance distributions having
only values of 0 and 1 and at most two sudden transi-
tions, known as Schrödinger colors.1 This belief has been
echoed in color science publications for many decades.2-8

West and Brill showed that one condition for all opti-
mal colors to have the Schrödinger form is that the

chromaticity diagram (the so-called horseshoe diagram)
be convex.9 Most historic proofs of optimal colors having
the Schrödinger form assume this convexity, either
explicitly or implicitly.

Recently, Davis demonstrated that the CIE 1931
CMFs produce a non-convex chromaticity diagram.10 He
did this by measuring external angles around the chro-
maticity diagram using a specialized software package for
color calculations written in R language, called colorSpec.
He also presented a careful and precise statement of West
and Brill's theorem and other related concepts, presented
in lengthy mathematical form.

This article is directed more to the color scientist with
a background in numerical methods instead of formal
mathematics; the first part of this article will demonstrate
the non-convexity of the chromaticity diagram using only
a single MATLAB function. This non-convexity is very
slight and has no impact on practical colorimetric
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computations. It does, however, have a significant impact
on the shape of some optimal object color reflectance dis-
tributions. Instead of the usual two-transition
Schrödinger form, many optimal colors exhibit higher
transition counts. A linear programming (LP) approach
will be developed and be used to compute the reflectance
distribution of optimal object colors, located anywhere
on the OCS surface. It will be used to map regions where
these higher-transition optimal colors reside on the OCS
surface. An interesting complementary point-symmetry
of the regions is observed.

Next, an analysis will reveal what portions of the
chromaticity diagram are most responsible for the high-
transition optimal object colors. Although the far blue and
red ends of the diagram exhibit more severe non-convexities
than elsewhere on the diagram, it will be demonstrated that
the two ends have little influence on the production of
high-transition optimal colors. An experiment will then be
presented to “convexify” the CMFs through very slight per-
turbations of the color-matching values. This convexification
succeeds in eliminating much, but not all, of the high-
transition optimal object colors.

Finally, a similar analysis will be applied to the more
recent “physiologically-relevant” CMFs transformed from
cone fundamentals.11 It will be demonstrated that
although these CMFs also exhibit a slight degree of non-
convexity, the prevalence of higher-transition optimal
object colors is very minimal and is readily eliminated by
the convexification process.

2 | CONVEXITY OF THE
CHROMATICITY DIAGRAM

Here, we are considering the 1931 2� CIE Standard Colori-
metric Observer Data (CMFs) that span 360 to 830 nm in
1 nm intervals.11,12 We designate this 471 � 3 matrix with
the symbol A. The chromaticity coordinates associated with
A are found by dividing each row of A by the row sum. The
first two columns are then identified as x and y chromatic-
ity coordinates. In MATLAB this is accomplished with the
statement xy¼A : ,1 : 2ð Þ:=sum A,2ð Þ; , where xy is a
471� 2 matrix of chromaticity coordinates, producing the
well-known “horseshoe” chromaticity diagram.

We now use the notion of a convex hull to assess the
convexity of the chromaticity diagram. When applied to a
discrete set of points in two dimensions, the convex hull
is the smallest convex polygon that contains all of the
points. If it turns out that any of the chromaticity coordi-
nates of the horseshoe reside in the interior of the convex
hull, then the horseshoe is not convex.

The convex hull is generated in MATLAB with the state-
ment k¼ convhull xyð Þ . The vector k contains the indices

of rows of xy that form the convex hull boundary. It turns
out that only 161 of the 471 rows of xy contribute to this
boundary. Figure 1 depicts graphically where they are.
The black dots are those that form the convex hull
boundary and the red dots are those that fall inside of it.

Close examination of one of the red dots (figure inset)
shows that the horseshoe polygon (solid black line) falls
slightly inside the convex hull polygon (blue dashed line)
in some areas. There are two main regions of non-convex-
ity: several large pockets of wavelengths above 574 nm,
and another segment running 435 to 453 nm. There are
also many pockets of non-convexity at both extreme ends
of the visible range.

The non-convexity persists with lower-resolution
versions of the 1 nm CMFs. Figure 2 shows the non-
convexity of 5 and 10 nm versions of CMFs that are com-
monly used in colorimetric computations. The red dots
indicate that the non-convexity is present here as well.

This non-convexity is extremely small. In chroma-
ticity space units, the horseshoe and convex hull poly-
gons are only about 0.00005 units apart in the Figure 1
inset. This very small difference will have no practical
impact on typical colorimetric calculations. It turns
out, however, that it does have a significant impact on

FIGURE 1 Chromaticity diagram (black solid line) and convex

hull enveloping it (blue dashed line). Red dots are points on

chromaticity diagram that fall slightly inside the convex hull,

indicating a slight non-convexity of the horseshoe for portions

above 574 nm and also a small portion running 435 to 453 nm
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the shape of optimal object colors, as discussed in the
next sections.

3 | COMPUTING OPTIMAL
OBJECT COLOR REFLECTANCE
CURVES

The standard approach to characterizing the OCS is to
start with two-transition Schrödinger reflectance curves
and map them into tristimulus space to form the bound-
ary of the solid.2-5,13 An alternate approach is to make no
assumption of the shape of the optimal reflectance curve,
but seek points on the surface of the OCS by optimization
methods. In this article, we follow the latter approach
using LP. Historically, LP has been used in colorimetric
calculations to compute metamer mismatch volumes,14-17

to design illuminants to achieve desired rendering
effects,18 and to compute subtractive mixture recipes for
colorants based on the Kubelka-Munk theory.19-21

The idea of using LP to identify the OCS surface is
not new. In his 1969 article on limits of metamerism (ie,
metamer mismatch volumes), Allen mentions in passing
(without any details) that LP could be used to compute
MacAdam limits (optimal object colors).14 Ohta and
Wyszecki repeat Allen's claim in their 1975 article on
metamer mismatch volumes, but only go so far as to state
that it would be achieved with a simplified version of

some of the equations they present.15 In 2010, Li et al
explicitly use LP to determine the shape of cross-sections
of the OCS by first identifying key locations on each cross
section by LP, and then by using LP repeatedly to fill in
the curves between these key locations.22 Although their
LP formulation directly computes the shape of the reflec-
tance curves as a by-product of the computation, the
focus of their article is instead on identifying the shape of
the OCS in tristimulus space. They apparently did not
encounter (or perhaps notice) any cases where the two-
transition assumption was violated (other than inevitable
artifacts of discretization at the two-transition locations,
which they did mention).

The LP presented in this article uses only one basic
colorimetric equation:

XYZW ¼AW
0 ρ: ð1Þ

In the above equation, XYZW is a 3� 1 vector of
illuminant-W-referenced tristimulus values, and ρ is an n
� 1 vector of reflectance values (0-1), where n is the num-
ber of wavelength intervals used to discretize continuous
spectral distributions over the visible range. Matrix AW is
an n� 3 matrix of illuminant-W-referenced CMFs, com-
puted as �WA , where �W is an n�n matrix with illumi-
nant W on the main diagonal and zeros elsewhere. Prime
denotes matrix transpose. As mentioned in Section 2,
matrix A is an n� 3 array of CMFs by columns, A¼

FIGURE 2 Convex hull analysis of lower-resolution versions of the 1 nm color-matching functions, having 5 nm wavelength intervals

(left) and 10 nm intervals (right). Red dots show chromaticity coordinates falling slightly inside the convex hull boundary
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�x,�y,�z½ � . It is assumed that the illuminant has been nor-
malized so that the scalar product �y0�W equals 100. For
the standard 1931 2� CIE standard CMFs with 1 nm reso-
lution, n is 471.

Note that the reflective/transmissive version of tri-
stimulus values are being used here (as opposed to the
emissive version), so all tristimulus values are referenced
to an illuminant, hence the W subscript. Even though dif-
ferent subscripts may be used to identify special tristimu-
lus values in this article, it is understood that all of them
are W-referenced. For example, the white point, XYZwp is
the tristimulus triplet formed as the three row sums of
AW

0
(three column sums of AW).
Figure 3 presents a cut-away view of the interior of the

OCS. Four key locations are identified, (a) the white point,
XYZwp, (b) the 50% gray halfway point between the origin
and the white point, XYZ50% = XYZwp/2, (c) an arbitrary
point within the OCS, XYZtarg, which defines a direction
with respect to XYZ50%, and (4) the point of intersection of
a ray in that direction with the OCS outer surface, XYZopt.

A spherical coordinate system is established, centered
at XYZ50%. Every XYZopt on the surface is associated with
a unique (θ,φ) pair. The spherical coordinate system will
come in handy in a subsequent section, when it comes
time to plot a dense array of optimal color data as viewed
from the interior of the OCS.

Consider the vector XYZtarg�XYZ50%. When this vec-
tor is based at XYZ50%, it points in the direction of the ray
shown in Figure 3. Next, consider a scalar, c, which
serves to magnify the vector and locate an arbitrary point,
XYZ, along the ray:

XYZ¼XYZ50%þ c XYZtarg�XYZ50%

� �
: ð2Þ

Substituting for XYZ using Equation (1), we now have an
equation in terms of our unknowns, ρ and c. We seek to
maximize c to move as far along the ray as possible, while
constraining ρ to be between 0 and 1:

max
ρ,c

c

s:t: AW
0 ρ¼XYZ50%þ c XYZtarg�XYZ50%

� �
0≤ ρ≤ 1:

ð3Þ

This is a linear program. To solve this LP with MATLAB's
“linprog” function, it needs to be recast in standard form:

min
x

f 0x

s:t: Aeqx¼ beq
xlb ≤ x ≤ xub,

ð4Þ

where f, x, beq, xlb, and xub are all vectors and Aeq is a
matrix. This recasting of Equation 3 is accomplished by
concatenating ρ and c into a single 472 � 1 vector and
by minimizing �c.

min
ρ,c

� c

s:t: AW
0jXYZ50%�XYZtarg

� � ρ

c

( )
¼XYZ50%

0≤ ρ≤ 1:

ð5Þ

The following MATLAB statements produce the optimal
color reflectance distribution, ρ, corresponding to a point
on the surface of the OCS that is the intersection of a ray
emanating from XYZ50%, passing through XYZtarg:

>> options = optimoptions('linprog', 'Algorithm',

'dual-simplex',...

'OptimalityTolerance', 1e-9, 'ConstraintTolerance',

3e-9);

>> x = linprog([zeros(471,1);-1], [ ],[ ], [Aw',XYZ50-

XYZtarg], XYZ50,...

[zeros(471,1);-Inf], [ones(471,1);Inf], options);

>> rho = x(1:471);

The two tolerances used internally by the LP solver are
tightened up considerably. These values were determinedFIGURE 3 An object color solid with key locations identified
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experimentally to avoid premature termination of the
LP. Note that the MATLAB Optimization Toolbox is
required for function linprog.

The vast majority of reflectance curves generated by
this LP will have the expected two-transition structure.
For example, using a target of XYZtarg ¼ 10;40;30½ � , the
LP gives the reflectance shown on the left side of
Figure 4. In some cases, however, more than two tran-
sitions are obtained. For example, if the target is chan-
ged to XYZtarg ¼ 49:1;40:3;25:0½ � , a four-transition
reflectance curve is produced, as shown on the right side
of Figure 4.

It is natural to question the higher-transition result. Is
it just an artifact of the LP solution process? Is it really on
the outer surface of the OCS? In other words, is there a
two-transition solution along the same ray that is even
farther from XYZ50%, which would make the high-
transition solution an interior point of the OCS, and not
optimal? The LP solution process involves pivots into and
out of an active basis, using tolerances to decide if opti-
mality conditions have been numerically satisfied. Is it
possible that the higher-transition solutions are just
barely suboptimal points that happen to satisfy the opti-
mality conditions numerically within the specified toler-
ances? These issues will be addressed in Section 5, but
first, a survey of how often and where the high-transition
LP solutions occur will be presented.

4 | A MAP OF HIGH-TRANSITION
LP SOLUTIONS

Figure 3 presented a spherical coordinate system cen-
tered at XYZ50%. A second rectangular coordinate system
was also shown in that figure, defined as (X

0
,Y

0
,Z

0
) = (X,

Y, Z)�XYZ50%. Suppose we wish to visualize the OCS
surface by placing our viewpoint at XYZ50% and directing
our view either up or down the Z

0
axis. Figure 5 shows

two polar plots of how we can arrange a mapping of the
spherical coordinate system, in both cases, placing the X

0

axis running to the right. The left plot in Figure 5 visual-
izes the upper half of the OCS and the right plot
visualizes the lower half.

We are now able to create a high-resolution bitmapped
graphic by superimposing a rectangular lattice over each
polar plot. The lattice points correspond to the pixels of a
bitmapped image, and each pixel has a corresponding
spherical coordinate pair, (θ,φ). We can formulate an LP
for each pixel by defining XYZtarg = XYZ50%+ [sin(φ) cos
(θ); sin(φ) sin(θ); cos(φ)]. Figure 6 presents a color-
coded summary of transition count of the LP solution
associated with each pixel's XYZtarg.

Several notable features stand out. First, it is evident
that the vast majority of optimal colors have the two-
transition Schrödinger form (the black and gray regions).
Second, it appears that there are two regions of higher-
transition optimal colors that are mirror images of one
another. The region in the upper half are all type II-like,
having reflectance of 1 everywhere except for several
pockets of 0 values. Conversely, the region in the lower
half are all type I-like, having 0 reflectance everywhere
except for several pockets of 1 values. Another way to
interpret this is that the complement of a higher-
transition color is a color of the same transition count,
but of the opposite type. A line connecting the two passes
through XYZ50% (point symmetry).

Certainly, there are two-transition object colors in the
same directions as the higher-transition colors in Figure 6.
How do they compare? The next section examines that
question.

FIGURE 4 Reflectance curves produced by the linear programming for two different targets
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5 | ARE SOME SCHRÖDINGER
COLORS SUBOPTIMAL?

The short answer appears to be yes, but only because of the
slight non-convexity of the 1931 2� CIE Standard Colori-
metric Observer Data. To demonstrate this, another compu-
tational experiment that parallels that shown in Figure 6
was performed, this time using each XYZtarg to identify the
two-transition color along the associated ray. This was
accomplished using the MATLAB code that was pres-
ented in an article by Masaoka and Berns.23 Its original
purpose was to compute “optimal metamers” for
Logvinenko's “object color space.”24 Here, it is adapted
to compute only the two-transition part.*

By computing the distance from XYZ50% to the tri-
stimulus values of both the two-transition color and
the high-transition color, both measured along the
same ray, a comparison can be made. In all cases, the
high-transition color was found to be slightly farther
away from XYZ50% than the two-transition color was.
Figure 7 summarizes this difference graphically. Only
the top half is shown, as the bottom half is again a
point symmetric copy.

The gray region is where the LP solution gives a two-
transition color, which matches the two-transition color
returned by the Masaoka & Berns code. In those cases,
the distances from XYZ50% to each of the two, measured
along the same direction from XYZ50%, match to machine
floating point tolerance. In regions of higher transition
count, however, the difference in distances is 10 orders of
magnitude greater than machine floating point noise and

6 orders of magnitude greater than the LP optimality
tolerances. Thus, the LP solutions obtained are not the
result of numerical noise or optimality tolerances, but are
distinct solutions located beyond the two-transition
Schrödinger colors. In other words, the two-transition
colors (in the regions where the LP gives higher-
transition optimal colors) are suboptimal and fall somewhat
inside the OCS volume.

6 | EFFECT OF CHANGING CMFS
RESOLUTION

In Section 2, it was shown that the 1931 2� CIE CMFs
retain non-convexity at other wavelength interval sizes.
Here, we examine one specific point on the OCS sur-
face and how the LP high-transition optimal color and
two-transition color (from the Masaoka & Berns code)
are affected by resolution of the CMFs. Figure 8 shows
the two solutions for wavelength resolutions of 0.1,
1, 5, and 10 nm. The black line is the two-transition
reflectance curve and the blue region is the LP optimal
reflectance curve (Note that both are bar plots, one is
filled in blue and the other is only outlined.). The small
image inset into each of the four plots shows the transi-
tion count distribution as computed from the CMFs
with the various wavelength interval sizes. It uses the
same color coding as shown in Figure 6. Even at 10 nm
intervals, the high-transition behavior persists. The
small white dot in each plot shows where the two
reflectance plots are located on the OCS surface.

FIGURE 5 Polar mapping for upper and lower halves of object color solid
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The reflectance distributions all show magnitudes at
the transition points that are between 0 and 1. This is an
artifact of the discretization of the CMFs. Since both the
LP and the Masaoka & Berns code have constraints that
require the reflectance curve to have an associated
tristimulus value triplet that exactly matches a specified
value, the only way to satisfy this match is to allow the
transition points to have intermediate values. The way

this should be interpreted is that the “true” transition
points fall somewhere within the finite width of the
wavelength interval. Li et al noticed this same artifact in
their 2010 article, and came to the same conclusion.22

As mentioned in Section 5, the difference in tristimu-
lus values between the LP solution and the two-transition
solution is very small. For example, for the 1 nm case
shown in Figure 8, we have the following numerical
values:

θ¼ 1:478858 rad, φ¼ 0:371322 rad, XYZtarg ¼
50:03731

50:36132

50:94838

8>><
>>:

9>>=
>>;

XYZLPsoln ¼
51:79069

69:37875

99:99523

8>><
>>:

9>>=
>>;, XYZtwo-trans ¼

51:79066

69:37828

99:99402

8>><
>>:

9>>=
>>;

Difference in distance from XYZ50% ¼ 1:29�10�3

ð6Þ

7 | OTHER ILLUMINANTS

So far, all results presented are for an equal-energy illumi-
nant. Here, we examine how other illuminants affect the
results. Five high-chroma Munsell colors were selected, 5R
5/14, 5Y 8/16, 5G 7/10, 5B 6/10, and 5P 4/12, and an illu-
minant was created with the same chromaticity, using a
“smoothest” reflectance reconstruction technique.25-26

FIGURE 6 A view of the top and bottom halves of the object

color solid as viewed from the 50% gray point, looking in the +Z'/

�Z' directions

FIGURE 7 Difference in distances to the linear programming

solutions and to the two-transition solutions, measured from

XYZ50%, both along the same ray
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FIGURE 8 The effect of different

color-matching functions wavelength

interval size
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They are all shown at the top of Figure 9, scaled to have a
maximum value of 1.

The lower portion of Figure 9 shows the regions of
high-transition optimal colors associated with each of
the Munsell-based illuminants, plotted on the chro-
maticity plane. The small circles are the chromatic-
ities of the illuminants. The green and orange lines
are the main and opposite meridians. Only the type II-
like regions appear since the type I-like regions have
very high chromatic purity, and are compressed along
the boundary of the chromaticity diagram. It is evi-
dent that the general distribution of transition count
locations persists across a wide range of illuminants.
The choppiness in Figure 9 is simply an artifact of a
difference in graphics resolution between Fig-
ures 6 and 9.

8 | IDENTIFYING THE SOURCE OF
HIGH-TRANSITION OPTIMAL
COLORS

This section examines which portions of the chromaticity
diagram are the most responsible for the high-transition
optimal colors. As mentioned in Section 2, the non-
convexity along the nearly straight, right-hand side of the
chromaticity diagram is very slight. What is not visible in
Figure 1 is the behavior at both the far blue and far red
ends of the chromaticity diagram. At the far blue end, the
chromaticity diagram points between 360 and 412 nm
make several excursions away from the convex hull
boundary and into the interior of the convex hull. The
largest of these excursions is about three times larger
than what was shown in Figure 1 inset (0.00013 vs
0.00005 in chromaticity space units).

The far red end shows a much different behavior.
Beyond a wavelength of 699 nm, the points on the chro-
maticity diagram begin to zigzag back and forth along a
fairly straight line in x, y space. This zigzag behavior is
clearly observed in Figure 10 when the distribution of
chromaticity diagram coordinates, x and y, are plotted
separately against wavelength.

To assess what impact these far-end non-convexities
have on the high-transition optimal object colors, the two
ends of the CMFs were removed, leaving only the values
for wavelengths 412 to 699 nm. The computation that
produced Figure 6 was repeated for the truncated CMFs
and the results are shown on the right side of Figure 11,
with a comparison to the original Figure 6 results shown
on the left side of the figure. It is evident that the far-end
non-convexities have little impact on the distribution of
high-transition optimal object colors.

9 | CONVEXIFYING THE CMFs

One final experiment was performed on the truncated
1931 2� CIE CMFs (412-699 nm portion). Centore
suggested it might be interesting to perturb the values of
the CMFs slightly to move the slightly non-convex mem-
bers of the chromaticity diagram onto the convex hull
boundary.27 One way to do this “convexification” is dem-
onstrated in Figure 12.

The convexification algorithm proceeds as follows:
First, we identify a pair of chromaticity coordinates that
belong to the convex hull boundary (the black dots in
Figure 1) that enclose one or more points not on the
boundary (the red dots in Figure 1). For example, the
“black” points at wavelengths 574 and 612 nm enclose
37 “red” points not on the convex hull boundary
(575-611 nm). Then, we mathematically construct a

FIGURE 9 (Top) Five illuminants with chromaticities

matching Munsell 5R 5/14, 5Y 8/16, 5G 7/10, 5B 6/10, and 5P 4/12.

(Bottom) High-transition optimal color regions associated with

each illuminant, plotted on the chromaticity diagram
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FIGURE 10 Behavior of the far red end of the 1931 2� CIE chromaticity diagram, showing zigzag behavior beyond 699 nm

FIGURE 11 The minimal effect on high-transition optimal object colors after removing the far blue and red ends of the color-matching

functions
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straight line that connects the two black convex hull
points. Now for each interior red point, we construct
another line that passes through the red point and the

central white point of the chromaticity diagram.
The intersection of these two lines will have slightly dif-
ferent (x, y) coordinates than those of the red point. We
can convert these modified x and y values (along with the
original Y value of the red point) to tristimulus values,
XYZ, and replace the corresponding row of the CMFs
with the adjusted values. We repeat this for each red
point between the two enclosing black convex hull
points. This creates a straight line of modified red points
that align with the convex hull boundary. Finally, we
repeat this entire process for all remaining pairs of black
points that enclose one or more red points.

The outcome of the convexification process is a set of
CMFs that produce a chromaticity diagram that is convex
and also well-ordered in wavelength (because the far red
end was previously removed). Thus, the convexified
CMFs satisfy West and Brill's conditions under which
Schrödinger (two-transition) colors are optimal.9 The
computation that produced Figure 6 was again repeatedFIGURE 12 Convexification of the chromaticity diagram

FIGURE 13 High-transition optimal object color locations after convexification

FIGURE 14 A 20-transition optimal object color linear programming solution (blue-filled bar plot) and a metameric two-transition

Schrödinger color (black-outlined bar plot)
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for the convexified CMFs, and the results are shown on the
right side of Figure 13, with a comparison to the original
results of Figure 6 shown on the left side of the figure.

The region of high-transition optimal object colors
has diminished substantially, but still remains. The tran-
sition count for this remaining region is higher than
before; the color coding is as follows: maroon = 4 transi-
tions, yellow = 6 transitions, blue = 8 transitions, laven-
der = 10 transitions, orange = 12 to 14 transitions,
green = 16 to 24 transitions. A sample reflectance curve
from the green region (with 20 transitions) is shown in
Figure 14, along with the Schrödinger two-transition
reflectance curve along the same XYZtarg target direction
computed from the Masaoka & Berns algorithm.

Upon closer examination, it is found that the distance
from XYZ50% to each of the two colors shown in
Figure 14 matches to machine floating point precision.
They also share the same tristimulus values to machine
precision. It is reasonable to conclude that the two colors
are metamers of one another and both reside at the same
point on the surface of the OCS. This conclusion also
agrees with West and Brill's conditions mentioned ear-
lier, since the two-transition color is optimal, even
though it shares a metameric match with another color
that has a higher transition count.

One way to interpret this result is to refer back to the
early article by Schrödinger.1 Brill, in his technical intro-
duction to Kuehni's English translation of that article,28

notes that Schrödinger went to great lengths to discuss
the effect of having a linear portion of the chromaticity
diagram. Schrödinger concluded there is a possibility of
optimal metamers with more than two transitions arising
from the linear portion. It is possible that this phenome-
non is what gives rise to the metameric optimal object
colors observed in Figure 13.

10 | MODERN CMFs

So far, this presentation has focused on the 1931 2� CIE
CMFs. It is natural to wonder if the same high-transition
optimal object color phenomena are shared by other,
more modern versions of CMFs. We now turn to a
recently-proposed set of CMFs transformed from the
cone fundamentals of Stockman and Sharpe,29 also
known as “physiologically-relevant” CMFs.11 Examining
the convex hull enveloping the chromaticity diagram
derived from these CMFs, it is found that some slight non-
convexity persists along the nearly linear right-hand side,
but the inward deviation from the convex hull boundary is
about 30 times smaller than that observed with the 1931
CMFs, measured in chromaticity space. The far blue end
also shows some significant non-convexity for points

<410 nm. The far red end does not experience the zigzag
behavior of the 1931 CMFs. Instead, the chromaticity dia-
gram makes a 180� reversal in direction at 703 nm and
continues to back up along the same curve for points
>703 nm, with the final endpoint of 830 nm landing
between the points 647 and 648 nm.

The computation that produced Figure 6 was performed
for the modern CMFs in several different ways, all summa-
rized in Figure 15. In each case, only the top half is shown
since the lower half is again a point-symmetric copy. The
meridians are shown as heavy white lines and the white
point is shown as a white circle. In the first image (a), the
unmodified CMFs are examined, showing that there are
some regions of higher transition count, mostly along the
meridians, but also along a narrow wisp extending away
from the meridians. The transition count is four in the
maroon region and six in the small yellow region. Next, two
modifications of the CMFs are examined, image (b) which
removes the far blue end <410 nm, and image (c) which
removes the far red end >703 nm. Next, both the far blue

FIGURE 15 Higher-transition optimal object colors produced

by physiologically relevant color-matching functions, with and

without far ends removed and convexified (see text)
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and far red ends are removed in image (d). At this point,
the only remaining region of higher-transition count is the
narrow wisp that extends away from the meridians. We can
conclude that the higher-transition count region along the
meridians is due to the behavior of the far ends of the chro-
maticity diagram, because it disappears when the far ends
of the CMFs are removed.

Figure 15E is the result of applying the con-
vexification procedure discussed in Section 9 to the trun-
cated CMFs having both far blue and red ends removed.
The resulting CMFs produce a chromaticity diagram that
is convex and well-ordered in wavelength. All instances
of higher-transition colors are eliminated by the con-
vexification; all optimal object colors are now of the two-
transition Schrödinger type. It is interesting to note that
we do not see any high-transition colors appearing due to
the linear portions produced by the convexification pro-
cess, as we saw with the 1929 CMFs. It is not clear why
this is, and this could be the subject of further inquiry.

11 | CONCLUSIONS

The main conclusion that can be drawn from this presenta-
tion is that very slight non-convexities of the spectrum locus
can have a significant impact on the shape of reflectance
curves associated with optimal object colors. For the 1931 2�

CIE CMFs, there are regions on the surface of the OCS con-
taining optimal object colors with transition count higher
than the usual two-transition Schrödinger colors. There are
still two-transition colors that exist very near these high-
transition colors, but they are located slightly toward the
interior of the OCS, and are therefore not optimal.

Another interesting observation is that the high-
transition solutions appear to come in point-symmetric
pairs, one type I-like and the other type II-like, but other-
wise matching in transition count and transition locations.
The size of the regions of high-transition optimal colors,
when plotted on the chromaticity diagram, depends on the
illuminant. The largest regions are associated with illumi-
nants nearest to the boundary non-convexity.

A convexification procedure was developed and applied
to the CMFs to slightly perturb the chromaticity diagram to
become convex. It causes several segments of the chroma-
ticity diagram to become linear, which appears to generate
high-transition optimal object colors that are metameric
to two-transition Schrödinger optimal object colors, as
predicted by Schrödinger in his 1920 article.

More modern CMFs were examined and instances of
higher-transition optimal object colors are nearly absent.
Most of them arise from the non-convexity at the far ends
of the chromaticity diagram, and the remaining ones are
extinguished by convexifying the CMFs.

The use of LP to find optimal reflectance spectra is
not new, but the way of searching along an arbitrary ray
through a target is unique. This brings up other potential
applications. For example, to create a slice of the three-
dimensional OCS for some fixed value of X, Y, or Z, all
we need to do is relocate our coordinate system to the
point on the gray line (connecting the origin and
the white point) that has the desired value of X, Y, or Z,
and then sweep the search ray around a circle in the
plane of the other two tristimulus coordinates.

Additional supporting material and additional discus-
sion can be found in the online supplementary documen-
tation of this article.30
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ENDNOTE
* There is a very minor bug in the Masaoka & Berns
MATLAB code. The statement in their function “optm”
XYZopt¼ sum T L 1ð Þ : L 2ð Þ, :ð Þð Þ… should be instead XYZopt¼
sum T L 1ð Þ : L 2ð Þ, :ð Þ,1ð Þ…. The bug occurs in the very rare instance
when L(1) = L(2); in that case, the original statement incorrectly
returns a scalar.
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